Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder pathologically characterized by the presence of glial cytoplasmic inclusions (GCIs). Some MSA patients exhibit motor deficits with accompanying cognitive impairment. Of note, some patients suffering from MSA with longer disease duration have AT8-positive signals, which correspond to phosphorylated tau (P-tau) at 202/205 (P-tau202/205). However, P-tau sites other than the AT8 antibody epitope antibody are less well studied. Here, we focused on the effect of α-synuclein (Syn) expression on the phosphorylation of tau in MSA model mice. Among the 6 kinds of antibodies against P-tau, we confirmed that antibodies against P-tau at 231 (P-tau231) were phospho-specific and found that P-tau231 level was increased in parallel with disease progression in MSA model mice. Additional studies of human brains revealed that P-tau231 was mainly expressed in the temporal cortex in MSA brains and that its expression level was significantly higher in MSA patients than in controls. Immunohistochemical analysis showed that anti-P-tau231-, but not AT8, antibodies mainly immunolabeled hippocampal CA2/3 pyramidal neurons, and some GCIs in MSA. These data suggest that P-tau231 occurs in MSA differently from P-tau202/205.
Keywords: Alzheimer disease; Dementia; Microtubule-associated protein; Multiple system atrophy; Phosphorylation; Synuclein; Tau.
© The Author(s) 2022. Published by Oxford University Press on behalf of American Association of Neuropathologists, Inc. All rights reserved. For permissions, please email: [email protected].