Peripheral inflammatory markers during an acute bacterial infection in older patients with and without cognitive dysfunction: A case control study

Brain Behav Immun Health. 2022 Aug 27:25:100503. doi: 10.1016/j.bbih.2022.100503. eCollection 2022 Nov.

Abstract

Dementia is a known risk factor for acute bacterial infections which may also play a significant role in promoting or accelerating cognitive impairment. Pneumonia and urinary tract infections are the main cause of hospitalisation of dementia patients and infections are a major precipitant of delirium. It is well established that peripheral immune signals induce a neuroinflammatory response largely mediated by microglial cells which is amplified with advanced age, neurodegenerative disorders and genetic characteristics. Reversely, the innate immune response to acute bacterial infection is tightly regulated by the brain. It remains unclear whether dysfunctional neural circuits affected by dementia and/or delirium could alter systemic innate immune responses at the periphery. The current study aims to determine if dementia and/or delirium are associated with an altered systemic inflammatory response to an acute bacterial infection. We recruited 46 hospitalised older patients with acute bacterial infections. From these, 29 participants had cognitive dysfunction (6 with delirium, 12 with dementia and 11 with delirium superimposed on dementia) and 17 had normal cognition. We also included a control group of 11 patients with dementia but with no current infection matched for age and educational status. Baseline characteristics were tested between groups using Kruskal-Wallis test and pairwise comparisons were subsequently assessed with Bonferroni correction for multiple comparisons for continuous variables. Chi square test was used to assess differences between groups in categorical data and correlations between peripheral inflammatory parameters were assessed with Spearman's test. The 4 groups with infection and the control group with no infection had similar characteristics except for cognitive function and functionality which was higher for the group of infected cognitively healthy participants. Levels of C-reactive protein were similar between the infected groups and higher than the non-infected dementia group. Infected patients with cognitive dysfunction (delirium and/or dementia) had higher serum levels of IL-6, TNF-alpha and IL-1beta. These participants had reduced expression of miR-145 in circulating exosomes which correlated negatively with miR-155 levels (r = -0.411, p = 0.027). Expression of CR1 in circulating CD14+ monocytes was higher in infected participants with cognitive dysfunction and, in this group, PICALM correlated both with TNF-alpha and IL-6. In contrast to what was observed in participants with normal cognition, expression of CR1 did not correlate with DAP12 in infected participants with cognitive dysfunction. Taken together, our findings suggest that cognitive dysfunction is associated with an exaggerated proinflammatory response during acute bacterial infection with deregulation of several molecular signalling pathways in circulating exosomes and in monocytes.