Glioblastoma (GBM) is the most commonly occurring primary malignant brain cancer with an extremely poor prognosis. Intra-tumoral cellular and molecular diversity, as well as complex interactions between tumor microenvironments, can make finding effective treatments a challenge. Traditional adherent or sphere culture methods can mask such complexities, whereas three-dimensional organoid culture can recapitulate regional microenvironmental gradients. Organoids are a method of three-dimensional GBM culture that better mimics patient tumor architecture, contains phenotypically diverse cell populations, and can be used for medium-throughput experiments. Although three-dimensional organoid culture is more laborious and time-consuming compared to traditional culture, it offers unique benefits and can serve to bridge the gap between current in vitro and in vivo systems. Organoids have established themselves as invaluable tools in the arsenal of cancer biologists to better understand tumor behavior and mechanisms of resistance, and their applications only continue to grow. Here, details are provided about methods for generating and maintaining GBM organoids. Instructions of how to perform organoid sample embedding and sectioning using both frozen and paraffin-embedding techniques, as well as recommendations for immunohistochemistry and immunofluorescence protocols on organoid sections, and measurement of total organoid cell viability, are all also described.