The evolution of spectrum in antibiotics and bacteriocins

Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2205407119. doi: 10.1073/pnas.2205407119. Epub 2022 Sep 13.

Abstract

A key property of many antibiotics is that they will kill or inhibit a diverse range of microbial species. This broad-spectrum of activity has its evolutionary roots in ecological competition, whereby bacteria and other microbes use antibiotics to suppress other strains and species. However, many bacteria also use narrow-spectrum toxins, such as bacteriocins, that principally target conspecifics. Why has such a diversity in spectrum evolved? Here, we develop an evolutionary model to understand antimicrobial spectrum. Our first model recapitulates the intuition that broad-spectrum is best, because it enables a microbe to kill a wider diversity of competitors. However, this model neglects an important property of antimicrobials: They are commonly bound, sequestered, or degraded by the cells they target. Incorporating this toxin loss reveals a major advantage to narrow-spectrum toxins: They target the strongest ecological competitor and avoid being used up on less important species. Why then would broad-spectrum toxins ever evolve? Our model predicts that broad-spectrum toxins will be favored by natural selection if a strain is highly abundant and can overpower both its key competitor and other species. We test this prediction by compiling and analyzing a database of the regulation and spectrum of toxins used in inter-bacterial competition. This analysis reveals a strong association between broad-spectrum toxins and density-dependent regulation, indicating that they are indeed used when strains are abundant. Our work provides a rationale for why bacteria commonly evolve narrow-spectrum toxins such as bacteriocins and suggests that the evolution of antibiotics proper is a signature of ecological dominance.

Keywords: antibiotics; bacteriocin; evolution; microbiology; spectrum.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents* / pharmacology
  • Bacteria* / drug effects
  • Bacteria* / genetics
  • Bacteria* / metabolism
  • Bacteriocins* / genetics
  • Bacteriocins* / metabolism
  • Evolution, Molecular*
  • Selection, Genetic

Substances

  • Anti-Bacterial Agents
  • Bacteriocins