Cardiopulmonary Toxicity Following Intensity-Modulated Proton Therapy (IMPT) Versus Intensity-Modulated Radiation Therapy (IMRT) for Stage III Non-Small Cell Lung Cancer

Clin Lung Cancer. 2022 Dec;23(8):e526-e535. doi: 10.1016/j.cllc.2022.07.017. Epub 2022 Aug 10.

Abstract

Introduction: Intensity-modulated proton therapy (IMPT) has the potential to reduce radiation dose to normal organs when compared to intensity-modulated radiation therapy (IMRT). We hypothesized that IMPT is associated with a reduced rate of cardiopulmonary toxicities in patients with Stage III NSCLC when compared with IMRT.

Methods: We analyzed 163 consecutively treated patients with biopsy-proven, stage III NSCLC who received IMPT (n = 35, 21%) or IMRT (n = 128, 79%). Patient, tumor, and treatment characteristics were analyzed. Overall survival (OS), freedom-from distant metastasis (FFDM), freedom-from locoregional relapse (FFLR), and cardiopulmonary toxicities (CTCAE v5.0) were calculated using the Kaplan-Meier estimate. Univariate cox regressions were conducted for the final model.

Results: Median follow-up of surviving patients was 25.5 (range, 4.6-58.1) months. Median RT dose was 60 (range, 45-72) Gy [RBE]. OS, FFDM, and FFLR were not different based on RT modality. IMPT provided significant dosimetric pulmonary and cardiac sparing when compared to IMRT. IMPT was associated with a reduced rate of grade more than or equal to 3 pneumonitis (HR 0.25, P = .04) and grade more than or equal to 3 cardiac events (HR 0.33, P = .08). Pre-treatment predicted diffusing capacity for carbon monoxide less than equal to 57% (HR 2.8, P = .04) and forced expiratory volume in the first second less than equal to 61% (HR 3.1, P = .03) were associated with an increased rate of grade more than or equal to 3 pneumonitis.

Conclusions: IMPT is associated with a reduced risk of clinically significant pneumonitis and cardiac events when compared with IMRT without compromising tumor control in stage III NSCLC. IMPT may provide a safer treatment option, particularly for high-risk patients with poor pretreatment pulmonary function.

Keywords: Cardiopulmonary Toxicity; Intensity-Modulated Proton Therapy; Intensity-Modulated Radiation Therapy; Locally Advanced Lung Cancer; Non-Small Cell Lung Cancer.

MeSH terms

  • Carcinoma, Non-Small-Cell Lung* / pathology
  • Humans
  • Lung Neoplasms* / pathology
  • Neoplasm Recurrence, Local / etiology
  • Pneumonia* / etiology
  • Proton Therapy* / adverse effects
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted
  • Radiotherapy, Intensity-Modulated* / adverse effects