Encoded by SerpinA6, plasma corticosteroid-binding globulin (CBG) transports glucocorticoids and regulates their access to cells. We determined how CBG influences plasma corticosterone and adrenal development in rats during the pubertal to adult transition using CRISPR/cas9 to disrupt SerpinA6 gene expression. In the absence of CBG, total plasma corticosterone levels were ∼80% lower in adult rats of both sexes, with a greater absolute reduction in females than in males. Notably, free corticosterone and adrenocorticotropic hormone were comparable between all groups. Between 30 and 90 days of age, wild-type female rats showed increases in adrenal weight and the size of the corticosterone-producing region, the zona fasciculata (zf), in tandem with increases in plasma CBG and corticosterone concentrations, whereas no such changes were observed in males. This sex difference was lost in rats without CBG, such that adrenal growth and zf expansion were similar between sexes. The sex-specific effects of CBG on adrenal morphology were accompanied by remarkable changes in gene expression: ∼40% of the adrenal transcriptome was altered in females lacking CBG, whereas almost no effect was seen in males. Over half of the adrenal genes that normally exhibit sexually dimorphic expression after puberty were similarly expressed in males and females without CBG, including those responsible for cholesterol biosynthesis and mobilization, steroidogenesis, and growth. Rat adrenal SerpinA6 transcript levels were very low or undetectable. Thus, sex differences in adrenal growth, morphology and gene expression profiles that emerge during puberty in rats are dependent on concomitant increases in plasma CBG produced by the liver.
Keywords: glucocorticoids; knockout; steroidogenesis; stress.
© The Author(s) 2022. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: [email protected].