Herein, we developed a single and a duplex TaqMan quantitative PCR (qPCR) for absolute quantification of copy numbers of integrated dihydrofolate reductase-thymidylate synthase (mdhfr-ts) drug selectable marker for pyrimethamine resistance in Toxoplasma gondii knockouts (KOs). The single TaqMan qPCR amplifies a 174 bp DNA fragment of the inserted mdhfr-ts and of the wild-type (WT) dhfr-ts (wtdhfr-ts) which is present as single copy gene in Toxoplasma and encodes a sensitive enzyme to pyrimethamine. Thus, the copy number of the dhfr-ts fragment in a given DNA quantity from KO parasites with a single site-specific integration should be twice the number of dhfr-ts copies recorded in the same DNA quantity from WT parasites. The duplex TaqMan qPCR allows simultaneous amplification of the 174 bp dhfr-ts fragment and the T. gondii 529-bp repeat element. Accordingly, for a WT DNA sample, the determined number of tachyzoites given by dhfr-ts amplification is equal to the number of tachyzoites determined by amplification of the Toxoplasma 529-bp, resulting thus in a ratio of 1. However, for a KO clone having a single site-specific integration of mdhfr-ts, the calculated ratio is 2. We then applied both approaches to test T. gondii RH mutants in which the major surface antigen (SAG1) was disrupted through insertion of mdhfr-ts using CRISPR-Cas9. Results from both assays were in correlation showing a high accuracy in detecting KOs with multiple integrated mdhfr-ts. Southern blot analyses using BsaBI and DraIII confirmed qPCRs results. Both TaqMan qPCRs are needed for reliable diagnostic of T. gondii KOs following CRISPR-Cas9-mediated mutagenesis, particularly with respect to off-target effects resulting from multiple insertions of mdhfr-ts. The principle of the duplex TaqMan qPCR is applicable for other selectable markers in Toxoplasma. TaqMan qPCR tools may contribute to more frequent use of WT Toxoplasma strains during functional genomics.