[Analysis of HIV transmission hotspots and characteristics of cross-regional transmission in Guangxi Zhuang Autonomous Region based on molecular network]

Zhonghua Liu Xing Bing Xue Za Zhi. 2022 Sep 10;43(9):1423-1429. doi: 10.3760/cma.j.cn112338-20220424-00339.
[Article in Chinese]

Abstract

Objective: To analyze HIV transmission hotspots and characteristics of cross-regional transmission in Guangxi Zhuang autonomous region (Guangxi) based on the molecular network analysis, and provide evidence for optimization of precise AIDS prevention and control strategies. Methods: A total of 5 996 HIV pol sequences sampled from Guangxi between 1997 and 2020 were analyzed together with 165 534 published HIV pol sequences sampled from other regions. HIV-TRACE was used to construct molecular network in a pairwise genetic distance threshold of 0.5%. Results: The proportion of HIV sequences entering the molecular network of HIV transmission hotspots in Guangxi was 31.5% (1 886/5 996). In the molecular network of HIV cross-regional transmission, the links within Guangxi accounted for 51.6% (2 613/5 062), the links between Guangxi and other provinces in China accounted for 48.0% (2 430/5 062), and the links between Guangxi and other countries accounted for 0.4% (19/5 062). The main regions which had cross-regional linked with Guangxi were Guangdong (49.5%, 1 212/2 449), Beijing (17.5%, 430/2 449), Shanghai (6.9%, 168/2 449), Sichuan (5.7%, 140/2 449), Yunnan (4.2%, 102/2 449), Shaanxi (3.8%, 93/2 449), Zhejiang (2.8%, 69/2 449), Hainan (2.0%, 49/2 449), Anhui (1.5%, 37/2 449), Jiangsu (1.3%, 33/2 449), and other regions (each one <1.0%), respectively. The risk factors of entering the molecular network of HIV transmission hotspots in Guangxi included being aged ≥50 years (compared with being aged 25-49 years, aOR=1.68,95%CI:1.46-1.95), males (compared with females, aOR=1.21,95%CI:1.05-1.40), being single (compared with being married, aOR=1.18,95%CI:1.00-1.39), having education level of high school or above (compared with having education level of junior high school or below, aOR=1.21,95%CI:1.04-1.42), acquired HIV through homosexual intercourse (compared with acquired with HIV through heterosexual intercourse, aOR=1.77, 95%CI:1.48-2.12). The risk factors of cross-regional transmission included males (compared with females, aOR=1.74,95%CI:1.13-2.75), having education level of high school or above (compared with having education level of junior high school or below, aOR=1.96,95%CI:1.43-2.69), being freelancer/unemployed/retired (compared with being farmers, aOR=1.50,95%CI:1.07-2.11), acquired HIV through homosexual intercourse (compared with acquired with HIV through heterosexual intercourse, aOR=3.28,95%CI:2.30-4.72). Conclusion: There are HIV transmission hotspots in Guangxi. Guangxi and other provinces in China form a complex cross-regional transmission network. Future studies should carry out social network surveys in high-risk populations inferred from the molecular network analysis for the timely identification of hidden transmission chains and reduction of the second-generation transmission of HIV.

目的: 基于分子网络分析广西壮族自治区(广西)HIV传播热点和跨地区传播特征,为优化艾滋病精准防控策略提供证据。 方法: 整合1997-2020年采集的5 996条广西HIV pol区序列和165 534条公开发表的非广西HIV pol区序列,使用HIV-TRACE工具以0.5%成对基因距离阈值构建分子网络。 结果: 进入广西HIV传播热点分子网络的序列比例为31.5%(1 886/5 996)。在HIV跨地区传播分子网络中,省内连接占51.6%(2 613/5 062),国内连接占48.0%(2 430/5 062),国际连接占0.4%(19/5 062)。与广西跨地区连接的主要地区为广东省(49.5%,1 212/2 449)、北京市(17.5%,430/2 449)、上海市(6.9%,168/2 449)、四川省(5.7%,140/2 449)、云南省(4.2%,102/2 449)、陕西省(3.8%,93/2 449)、浙江省(2.8%,69/2 449)、海南省(2.0%,49/2 449)、安徽省(1.5%,37/2 449)和江苏省(1.3%,33/2 449),其余地区与广西跨地区连接比例均<1.0%。进入广西HIV传播热点分子网络风险较高的影响因素包括≥50岁(相比于25~49岁,aOR=1.68,95%CI:1.46~1.95)、男性(相比于女性,aOR=1.21,95%CI:1.05~1.40)、未婚(相比于已婚,aOR=1.18,95%CI:1.00~1.39)、高中及以上文化程度(相比于初中及以下,aOR=1.21,95%CI:1.04~1.42)和男男性传播(相比于异性性传播,aOR=1.77,95%CI:1.48~2.12)。跨地区连接风险较高的影响因素包括男性(相比于女性:aOR=1.74,95%CI:1.13~2.75),高中及以上文化程度(相比于初中及以下,aOR=1.96,95%CI:1.43~2.69)、自由职业/待业/退休(相比于农民,aOR=1.50,95%CI:1.07~2.11)、男男性传播(相比于异性性传播,aOR=3.28,95%CI:2.30~4.72)。 结论: 广西存在HIV传播热点,广西与国内地区组成复杂的跨地区传播网络。后续研究应针对分子网络分析推断的高风险人群开展社会网络调查,及时识别隐匿传播链,减少HIV二代传播。.

MeSH terms

  • Acquired Immunodeficiency Syndrome*
  • China / epidemiology
  • Disease Hotspot
  • Female
  • HIV Infections* / epidemiology
  • Heterosexuality
  • Humans
  • Male