The composition of amino acid and fatty acid has a vital function on meat quality and animal health. However, the underlying mechanism of amino acid and fatty acid metabolism in sheep during different grazing periods is still unclear. In this study, a total of 12 sheep were employed in different grazing periods. Our results showed that the composition of amino acids and fatty acids in muscle and adipose tissues was significantly altered between dry grass (DG) period and green grass (GG) period. Changes in the activities of the metabolism-related enzymes including BCKD, BCAT2, ACC, SCD, HSL, GSK3β, p-GSK3β, and FABP4 were observed in muscle and adipose during different grazing periods. In addition, the mRNA expression levels of ACC, FAS, SCD, HSL, LPL, and DGAT1 in muscle and adipose tissue were changed markedly in different grazing periods. Furthermore, the expression levels of mTOR and β-catenin/PPARγ/C/EBPα pathway-related proteins were predominantly altered in muscle and adipose among DG and GG. Taken together, all investigations simplified the process of amino acid and fatty acid metabolism disorders caused by different grazing periods, and the mTOR and β-catenin/PPARγ/C/EBPα play the essential role in this process, which provided an underlying mechanism of metabolism and meat quality.
Keywords: amino and fatty acids metabolism; grazing; mTOR; sheep; β-catenin/PPARγ/C/EBPα.
© 2022 Japanese Society of Animal Science.