Polymeric networks are commonly used for various biomedical applications, from reconstructive surgery to wearable electronics. Some materials may be soft, firm, strong, or damping however, implementing all four properties into a single material to replicate the mechanical properties of tissue has been inaccessible. Herein, we present the A-g-B brush-like graft copolymer platform as a framework for fabrication of materials with independently tunable softness and firmness, capable of reaching a strength of ∼10 MPa on par with stress-supporting tissues such as blood vessel, muscle, and skin. These properties are maintained by architectural control, therefore diverse mechanical phenotypes are attainable for a variety of different chemistries. Utilizing this attribute, we demonstrate the capability of the A-g-B platform to enhance specific characteristics such as tackiness, damping, and moldability.