One of the latest approved therapies for spinal muscular atrophy (SMA) is onasemnogene abeparvovec, which transduces motor neurons with the survival of motor neuron gene. The aim of this meta-analysis was to estimate the effect of onasemnogene abeparvovec on motor function in participants with type 1 SMA. Medline, Web of Science, Scopus, and Cochrane Library were searched for studies published from inception to August 2022. Pre-post clinical trials and observational studies determining the effect of onasemnogene abeparvovec on the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND) score or motor milestones (i.e., head control, sit unassisted, feed orally, not use permanent ventilatory support, crawl, stand alone, and walk alone) in participants with type 1 SMA were included. Continuous outcomes (i.e., CHOP-INTEND score) were expressed as pre-post mean difference and 95% confidence interval (CI), while the proportion of participants who achieved >40, >50, and >58/60 points on the CHOP-INTEND and the achievement of the motor milestones were expressed as proportions and 95% CI. A random effects meta-analysis was conducted on each outcome, and the baseline CHOP-INTEND score was considered a covariate. Eleven studies were included in the systematic review, and four were included in the meta-analyses. Onasemnogene abeparvovec improved CHOP-INTEND scores by 11.06 (9.47 to 12.65) and 14.14 (12.42 to 15.86) points at 3 and 6 months postinfusion, respectively. Moreover, 87%, 51%, and 12% achieved CHOP-INTEND scores of >40, >50, and >58/60 points, respectively. However, this proportion increased to 100% in presymptomatic participants with greater baseline CHOP-INTEND. Motor milestones were also improved, especially in presymptomatic participants. Our systematic review not only showed a marked improvement in motor function in type 1 SMA but also showed that treatment in the presymptomatic stage improves the development of these children toward an evolution close to normal for their age.
Keywords: SMN1; gene therapy; meta-analysis; neuromuscular disorder; systematic review.