The DIN 92419 defines six principles for assistive systems' ergonomic design. There is, however, a lack of measurement tools to evaluate assistive systems considering these principles. Consequently, this study developed a measurement tool for the quantitative evaluation of the fulfilment of each principle for assistive systems. A systematic literature review was performed to identify dimensions belonging to the principles, identify how previous research evaluated these dimensions, and develop a measurement tool for assistive systems. Findings show that scales commonly used for evaluating assistive systems disregard several aspects highlighted as relevant by research, implying the need for considering the DIN 92419 principles. Based on established scales and theoretical findings, a questionnaire, and a checklist for evaluating assistive systems were developed. The work provides a grounding for measuring relevant aspects of assistive systems. Further development is needed to substantiate the reliability and validity of the proposed questionnaire scales and items. Practitioner Summary: Responding to the gap of a holistic measurement tool to evaluate assistive systems, a systematic literature review was performed considering the DIN 92419 principles. This resulted in a comprehensive summary of relevant aspects of assistive systems that were made numerically measurable, which proposes better criteria to assess assistive systems. Abbreviations: IoT: internet of things; RQ: research question; TAM: technology acceptance model; UTAUT: unified theory of acceptance and use of technology; AaaS: adaptivity as a service; SAR: socially assistive robots; SEEV: salience, effort, expectancy, and value; PRISMA: preferred reporting items for systematic reviews and meta-analyses; HMI: human-machine interaction; HRI: human-robot interaction; BCI: brain-computer interface; QUEST: Quebec user evaluation of satisfaction with assistive technology; SUS: system usability scale; NASA-TLX: NASA task load index; ATD PA: assistive technology device predisposition assessment; Wheel Con: wheelchair use confidence scale; CATOM: caregiver assistive technology outcome measure; CBI: caregiver burden inventory; RoSAS: robotic social attributes scale; WheelCon: wheelchair use confidence scale; IMI: intrinsic motivation inventory; ATD PA: assistive technology device predisposition assessment; UEQ: User experience questionnaire; USEUQ: usefulness satisfaction and ease of use questionnaire; USPW: usability scale for power wheelchairs; UES: user engagement scale; SUTAQ: service user technology acceptability questionnaire; QUEAD: questionnaire for the evaluation of physical assistive devices; FATCAT: functional assessment tool for cognitive assistive technology; SE-HRI: human-robot interaction scale; SART: situation awareness rating technique; TSQ;WT: tele-healthcare satisfaction questionnaire-wearable technology; PAIF: participants' assessment of the intervention's feasibility; SWAT: subjective workload assessment technique; MARS-HA: measure of audiologic rehabilitation self-efficacy for hearing aids; IOI-HA: International outcome inventory for hearing aids; FMA: functional mobility assessment; FBIS: familiarity and behavioural intention survey; CSQ: client satisfaction questionnaire; COPM: canadian occupational performance measure; ATCS: assistive technology confidence scale; ACC: acceptance; SSP: safety, security and privacy; OPT: optimisation of resultant internal load; CTRL: controllability; ADAPT: adaptability; P&I: perceptibility and identifiability; AAL: ambient assisted living; VR: virtual reality; AS: assistive system; WEIRD: Western, educated, industrialised, rich, and democratic; HEART: horizontal european activities of rehabilitation technology; AAATE: advancement of assistive technology in Europe's; GATE: global collaboration on assistive technology; ATA-C: assistive technology assessment toolkit.
Keywords: Assistive systems; design; ergonomics; evaluation; measurement.