Predicting SARS-CoV-2 Variant Spread in a Completely Seropositive Population Using Semi-Quantitative Antibody Measurements in Blood Donors

Vaccines (Basel). 2022 Aug 31;10(9):1437. doi: 10.3390/vaccines10091437.

Abstract

SARS-CoV-2 serologic surveys estimate the proportion of the population with antibodies against historical variants, which nears 100% in many settings. New approaches are required to fully exploit serosurvey data. Using a SARS-CoV-2 anti-Spike (S) protein chemiluminescent microparticle assay, we attained a semi-quantitative measurement of population IgG titers in serial cross-sectional monthly samples of blood donations across seven Brazilian state capitals (March 2021−November 2021). Using an ecological analysis, we assessed the contributions of prior attack rate and vaccination to antibody titer. We compared anti-S titer across the seven cities during the growth phase of the Delta variant and used this to predict the resulting age-standardized incidence of severe COVID-19 cases. We tested ~780 samples per month, per location. Seroprevalence rose to >95% across all seven capitals by November 2021. Driven by vaccination, mean antibody titer increased 16-fold over the study, with the greatest increases occurring in cities with the highest prior attack rates. Mean anti-S IgG was strongly correlated (adjusted R2 = 0.89) with the number of severe cases caused by Delta. Semi-quantitative anti-S antibody titers are informative about prior exposure and vaccination coverage and may also indicate the potential impact of future SARS-CoV-2 variants.

Keywords: SARS-CoV-2; delta; immunity; seroprevalence; vaccines; variants of concern.