Background Understanding the transmission source, pattern, and mechanism of infectious diseases is essential for targeted prevention and control. Though it has been studied for many years, the detailed transmission patterns and drivers for the seasonal influenza epidemics in China remain elusive. Methods In this study, utilizing a suite of epidemiological and genetic approaches, we analyzed the updated province-level weekly influenza surveillance, sequence, climate, and demographic data between 1 April 2010 and 31 March 2018 from continental China, to characterize detailed transmission patterns and explore the potential initiating region and drivers of the seasonal influenza epidemics in China. Results An annual cycle for influenza A(H1N1)pdm09 and B and a semi-annual cycle for influenza A(H3N2) were confirmed. Overall, the seasonal influenza A(H3N2) virus caused more infection in China and dominated the summer season in the south. The summer season epidemics in southern China were likely initiated in the "Lingnan" region, which includes the three most southern provinces of Hainan, Guangxi, and Guangdong. Additionally, the regions in the south play more important seeding roles in maintaining the circulation of seasonal influenza in China. Though intense human mobility plays a role in the province-level transmission of influenza epidemics on a temporal scale, climate factors drive the spread of influenza epidemics on both the spatial and temporal scales. Conclusion The surveillance of seasonal influenza in the south, especially the "Lingnan" region in the summer, should be strengthened. More broadly, both the socioeconomic and climate factors contribute to the transmission of seasonal influenza in China. The patterns and mechanisms revealed in this study shed light on the precise forecasting, prevention, and control of seasonal influenza in China and worldwide.
Keywords: China; driver; initiating area; seasonal influenza; transmission.