Arabidopsis plastid carbonic anhydrase βCA5 is important for normal plant growth

Plant Physiol. 2022 Nov 28;190(4):2173-2186. doi: 10.1093/plphys/kiac451.

Abstract

Carbonic anhydrases (CAs) are zinc-metalloenzymes that catalyze the interconversion of CO2 and HCO3-. In heterotrophic organisms, CAs provide HCO3- for metabolic pathways requiring a carboxylation step. Arabidopsis (Arabidopsis thaliana) has 14 α- and β-type CAs, two of which are plastid CAs designated as βCA1 and βCA5. To study their physiological properties, we obtained knock-out (KO) lines for βCA1 (SALK_106570) and βCA5 (SALK_121932). These mutant lines were confirmed by genomic PCR, RT-PCR, and immunoblotting. While βca1 KO plants grew normally, growth of βca5 KO plants was stunted under ambient CO2 conditions of 400 µL L-1; high CO2 conditions (30,000 µL L-1) partially rescued their growth. These results were surprising, as βCA1 is more abundant than βCA5 in leaves. However, tissue expression patterns of these genes indicated that βCA1 is expressed only in shoot tissue, while βCA5 is expressed throughout the plant. We hypothesize that βCA5 compensates for loss of βCA1 but, owing to its expression being limited to leaves, βCA1 cannot compensate for loss of βCA5. We also demonstrate that βCA5 supplies HCO3- required for anaplerotic pathways that take place in plastids, such as fatty acid biosynthesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / physiology
  • Carbon Dioxide / metabolism
  • Carbonic Anhydrases* / genetics
  • Carbonic Anhydrases* / metabolism
  • Plants / metabolism
  • Plastids / genetics
  • Plastids / metabolism

Substances

  • Carbonic Anhydrases
  • Carbon Dioxide
  • Arabidopsis Proteins