Background: Invasion of the intestinal mucosa by T. gondii elicits a local immune response of variable intensity. These reactions can be lethal in C57BL/6 mice. The tissue damage caused by inflammation and the functional effects depend on the host immunity, strain, and developmental form of the parasite. We investigated the effects of acute oral infection with T. gondii on histoarchitecture, enteric nervous system (ENS), and inflammatory markers in the jejunum and ileum of mice.
Methods: Female C57BL/6 mice were divided into a control group and a group orally infected with 1000 sporulated T. gondii oocysts (ME-49 strain). After 5 days, jejunum and ileum were collected and processed for analyzes (e.g., histological and histopathological examinations, ENS, cytokine dosage, myeloperoxidase, nitric oxide activity).
Main results: In infected mice, we observed a significant increase in serotonin-immunoreactive cells (5-HT IR) in the intestinal mucosa, as well as cellular infiltrates in the lamina propria, periganglionitis, and ganglionitis in the myenteric plexus. We also noted decreased neuron density in the jejunum, increased population of enteric glial cells in the ileum, histomorphometric changes in the intestinal wall, villi, and epithelial cells, remodeling of collagen fibers, and increased myeloperoxidase activity, cytokines, and nitric oxide in the intestine.
Conclusions and inferences: Acute infection of female mice with T. gondii oocysts resulted in changes in ENS and a marked increase in 5-HT. These changes are consistent with its modulatory role in the development of moderate acute inflammation. The use of this experimental model may lend itself to studies aimed at understanding the pathophysiological mechanisms of intestinal inflammation in humans involving ENS.
Keywords: Cytokines; Inflammation; Myenteric plexus; Small intestine; Toxoplasmosis.
Copyright © 2022 Elsevier Inc. All rights reserved.