Ag-modified α-Fe2O3 spherical particles interspersed on hierarchical flower-like NiAl-LDH microspheres with Z-scheme for significantly enhanced CO2 photoreduction into CO

J Colloid Interface Sci. 2023 Jan;629(Pt B):193-205. doi: 10.1016/j.jcis.2022.09.048. Epub 2022 Sep 14.

Abstract

The conversion of carbon dioxide (CO2) into value-added C1 and/or C2 chemicals by photocatalytic technology has been regarded as a "one stone-two birds" solution for environmental degradation and energy shortage. In this work, a novel Z-scheme mechanism photocatalyst of Ag-modified α-Fe2O3 spherical particles interspersed on hierarchical flower-like layered nickel-aluminum hydroxides (NiAl-LDH) microspheres (α-Fe2O3/Ag/NiAl-LDH, designated as FALDH) is successfully prepared by a combined in-situ hydrothermal and grating strategy. As expected, the optimal sample of FALDH-5/10 exhibits significantly enhanced photocatalytic performance for CO2 reduction with a highest CO yield up to 46.7 μmol g-1 under simulated sunlight without any sacrificial reagents and photosensitizers, compared with the pristine NiAl-LDH, binary Ag/NiAl-LDH and α-Fe2O3/NiAl-LDH, as well as surpassing the previously reported LDH-based counterparts. The high activity is ascribed to strong interaction between the NiAl-LDH microspheres and highly-dispersed Ag/α-Fe2O3 particles, boosted CO2 adsorption capacity and optimized bandgap from α-Fe2O3, and increased utilization efficiency of light from Ag. This study offers a new idea for more efficient stimulating the photocatalytic activity of LDHs by the construction of Z-scheme heterojunction with the aid of plasmonic metal(s) for CO2 photoreduction, and is expected to be employed to other photocatalytic applications effectively.

Keywords: Ag; NiAl-LDH; Photocatalytic CO(2) reduction; Z-scheme mechanism; α-Fe(2)O(3).