Cerium oxide nanoparticles transformation at the root-soil interface of barley (Hordeum vulgare L.)

Environ Sci Nano. 2018 Jun;5(8):1807-1812. doi: 10.1039/C8EN00316E.

Abstract

The transformation of cerium oxide nanoparticles (CeO2-NPs) in soil and its role in plant uptake is a critical knowledge gap in the literature. This study investigated the reduction and speciation of CeO2-NPs in barley (Hordeum vulgare L.) cultivated in soil amended with 250 mg CeO2-NPs kg-1 soil. Synchrotron micro-X-ray fluorescence (μXRF) was employed for spatial localization and speciation of CeO2-NPs in thin sections of intact roots at the soil-root interface. Results revealed that Ce was largely localized in soil and at the root surface in nanoparticulate form (84-89%). However, a few hot spots on root surfaces revealed highly significant reduction (55-98%) of CeO2-NPs [Ce(IV)] to Ce(III) species. Interestingly, only roots in close proximity to hot spots showed Ce uptake which was largely CeO2 (89-91%) with very little amount Ce(III) (9-10%). These results suggest that the reduction of CeO2-NPs to Ce(III) is needed to facilitate uptake of Ce.

Keywords: Nanoceria reduction; Synchrotron micro-X-ray fluorescence; nanomaterials transformation.