This study was to investigate the effects of different aeration rates on phosphorus (P) conversion and bacterial community dynamics in P-enriched composting by 16S rRNA gene sequencing, sequential P fractionation, network analysis and structural equation model (SEM). Results indicated that Olsen P content increased by 138 %, 150 %, 121 % after composting with aeration rate (L kg-1 DM min-1) at 0.2 (AR0.2), 0.4 (AR0.4) and 0.6 (AR0.6). AR0.4 was more conducive to enhance P solubilization efficacy and available P accumulation. Redundancy analysis indicated Lactobacillus, Spartobacteria and Pseudomonas were key bacteria associated with HCl-Pi especially in AR0.2 and AR0.4. Network analysis showed that increased aeration rate enhanced the connection and function homoplasy among modules and AR0.4 had more orderly community organization for key bacteria to solubilize P in directly and indirectly biotic way. SEM suggested indirectly biotic P-solubilization had more contribution than directly biotic way mainly by phosphate-solubilizing bacteria.
Keywords: Biotic pathways; Food waste compost; Phosphate-solubilizing bacteria (PSB) inoculation; Phylogenetic molecular ecological networks (pMENs); Rock phosphate (RP) solubilization.
Copyright © 2022 Elsevier Ltd. All rights reserved.