Chalcogenide perovskites, including BaZrS3, have been suggested as highly stable alternatives to halide perovskites. However, the synthesis of chalcogenide perovskites has proven to be a significant challenge, often relying on excessively high temperatures and methods that are incompatible with device integration. In this study, we developed a solution-based approach to the deposition of BaZrS3. This method utilizes a combination of a soluble barium thiolate and nanoparticulate zirconium hydride. Following solution-based deposition of the precursors and subsequent sulfurization, BaZrS3 can be obtained at temperatures as low as 500 °C. Furthermore, this method was extended to other chalcogenide perovskite (BaHfS3) and perovskite-related (BaTiS3) materials.