Functional validation of CYP304A1 associated with haedoxan A detoxification in Aedes albopictus by RNAi and transgenic drosophila

Pest Manag Sci. 2023 Jan;79(1):447-453. doi: 10.1002/ps.7213. Epub 2022 Oct 14.

Abstract

Background: Insect cytochrome P450 monooxygenases play important roles in the detoxification metabolism of endogenous and exogenous compounds. Haedoxan A (HA) from Phryma leptostachya L. is a highly efficient natural pesticide used to control houseflies and mosquitos. CYP4C21 and CYP304A1 were previously demonstrated to be transcriptionally increased in Aedes albopictus in response to HA exposure, but their involvement in HA metabolism is unknown.

Results: Our data showed that CYP304A1 expression levels in A. albopictus were highest in third-instar larvae, and the expression level of CYP4C21 decreased significantly with the growth of instars, with the lowest occurring in the pupal stage. Compared with the control, the silencing of CYP304A1 and CYP4C21 genes by chitosan nanoparticle-mediated RNA interference could deplete 58.2% and 54.0% of the expression of corresponding genes, respectively. The bioassay data showed that knocking down the expression of CYP304A1 increased the mortality of A. albopictus when exposed to HA at LC30 and LC50 doses, but did not significantly increase mortality after silencing CYP4C21. Our data demonstrated that CYP304A1, but not CYP4C21, may be involved in HA detoxification. Moreover, the resistance ratio of CYP304A1 overexpressing flies was approximately 2-fold higher than that of the control line. The metabolized product of HA by CYP304A1 needs to be further confirmed by in vitro expression.

Conclusion: This finding showed that inducibility was not always linked to detoxifying capabilities, and enhanced our understanding of the molecular basis of HA metabolic detoxification in A. albopictus. © 2022 Society of Chemical Industry.

Keywords: Aedes albopictus; Haedoxan a; P450; chitosan/interfering RNA; transgenic fly.

MeSH terms

  • Aedes* / genetics
  • Animals
  • Drosophila*
  • RNA Interference