Purpose: 1) To test the hypothesis of the existence of a perinatal vitamin A (VA) programming of VA metabolism and to better understand the intestinal regulation of VA metabolism.
Methods: Offspring from rats reared on a control (C) or a VA-deficient (D) diet from 6 weeks before mating until offspring weaning, i.e., 7 weeks after mating, were themselves reared on a C or D diet for 19 weeks, resulting in the following groups: C-C (parents fed C-offspring fed C), D-C, C-D and D-D. VA concentrations were measured in plasma and liver. β-Carotene bioavailability and its intestinal conversion rate to VA, as well as vitamin D and E bioavailability, were assessed after gavages with these vitamins. Expression of genes involved in VA metabolism and transport was measured in intestine and liver.
Results: C-D and D-D had no detectable retinyl esters in their liver. Retinolemia, hepatic retinol concentrations and postprandial plasma retinol response to β-carotene gavage were higher in D-C than in C-C. Intestinal expression of Isx was abolished in C-D and D-D and this was concomitant with a higher expression of Bco1, Scarb1, Cd36 and Lrat in males receiving a D diet as compared to those receiving a C diet. β-Carotene, vitamin D and E bio-availabilities were lower in offspring receiving a D diet as compared to those receiving a C diet.
Conclusion: A VA-deficient diet during the perinatal period modifies the metabolism of this vitamin in the offspring. Isx-mediated regulation of Bco1 and Scarb1 expression exists only in males severely deficient in this vitamin. Severe VA deficiency impairs β-carotene and vitamin D and E bioavailability.
Keywords: Bioavailability; Cholecalciferol; Retinol; Retinyl palmitate; Tocopherol; β-Carotene.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.