Background: Circulating tumor DNA (ctDNA) has been proven as a marker for detecting minimal residual diseases following systemic therapies in mid-to-late-stage non-small-cell lung cancers (NSCLCs) by multiple studies. However, fewer studies cast light on ctDNA-based MRD monitoring in early-to-mid-stage NSCLCs that received surgical resection as the standard of care.
Methods: We prospectively recruited 128 patients with stage I-III NSCLCs who received curative surgical resections in our Lung Cancer Tempo-spatial Heterogeneity prospective cohort. Plasma samples were collected before the surgery, 7 days after the surgery, and every 3 months thereafter. Targeted sequencing was performed on a total of 628 plasma samples and 645 matched tumor samples using a panel covering 425 cancer-associated genes. Tissue clonal phylogeny of each patient was reconstructed and used to guide ctDNA detection.
Results: The results demonstrated that ctDNA was more frequently detected in patients with higher stage diseases pre- and postsurgery. Positive ctDNA detection at as early as 7 days postsurgery identified high-risk patients with recurrence (HR = 3.90, P < 0.001). Our results also show that longitudinal ctDNA monitoring of at least two postsurgical time points indicated a significantly higher risk (HR = 7.59, P < 0.001), preceding radiographic relapse in 73.5% of patients by a median of 145 days. Further, clonal ctDNA mutations indicated a high-level specificity, and subclonal mutations informed the origin of tumor recurrence.
Conclusions: Longitudinal ctDNA surveillance integrating clonality information may stratify high-risk patients with disease recurrence and infer the evolutionary origin of ctDNA mutations.
Keywords: Circulating tumor DNA; Liquid biopsy; Minimal residual disease; Non-small-cell lung cancer.
© 2022. The Author(s).