A novel ratiometric fluorescence probe was designed for the determination of Al3+ by self-assembling of NH2-MIL-101(Fe) and [Ru(bpy)3]2+. Under the excitation wavelength of 360 nm, the NH2-MIL-101(Fe)@[Ru(bpy)3]2+ presented a dual-emitting luminescent property at 440 and 605 nm, respectively. In the presence of Al3+, the blue fluorescence of NH2-MIL-101(Fe)@[Ru(bpy)3]2+ at 440 nm was enhanced remarkably, while the red emission at 605 nm was almost not influenced. Therefore, taking the fluorescence at 440 nm as the report signal and 605 nm as the reference signal, quantitative determination was achieved for Al3+ concentration in the ranges 0.2-25 μM and 25-250 μM. The limit of detection (LOD) and limit of quantification (LOQ) were calculated to be 73 nM and 244 nM, respectively. The sensing mechanisms were studied by theoretical calculation and optical spectra. The analysis of real food samples confirmed the suitability of the proposed method. More importantly, portable fluorescent test papers were successfully manufactured to provide a strategy for visual, rapid, and on-site detection of Al3+.
Keywords: Aluminum ions; Fluorescent test paper; Food analysis; NH2-MIL-101(Fe)@[Ru(bpy)3]2+; Ratiometric fluorescence; Sensing mechanisms; Visual detection.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.