Eosinophils have been previously shown to be able to regulate early humoral responses during systemic vaccination. Here we investigated the role of eosinophils during pulmonary vaccination, comparing vaccine-induced responses in eosinophil-deficient (ΔdblGATA) and wild-type mice using a Th2 adjuvant. We observed that eosinophils were needed to induce a complete vaccine response, thereby eliciting specific antibody-secreting plasma cells in the regional lymph nodes and antibody secretion in the BAL at the early stage of the immune response. Reintroduction of eosinophils in the lungs of ΔdblGATA mice during the priming stage enhanced both specific IgM and IgG plasma cells but not specific IgA plasma cells. Upon vaccination, eosinophils migrated to the lungs and secreted cytokines involved in B-cell activation, which might promote antibody production. Importantly, however, the absence of eosinophils did not impair late immune responses in a prime/boost protocol because, in that setup, we uncovered a compensating mechanism involving a Th17 pathway. In conclusion, our data demonstrate for the first time a new role for eosinophils during lung mucosal vaccination, whereby they accelerate early immune responses (IgM and IgG) while regulating IgA production at the late stages.
Keywords: antibody production; eosinophils; lung vaccination; plasma cells.