We measured the neutron reflectivity (NR) of isotactic polypropylene (PP) thin films deposited on Si substrates modified by hexamethyldisilazane (HMDS) at the saturated vapor pressure of deuterated water at 25 °C and 60 °C/85% RH to investigate the effect of HMDS on the interfacial water accumulation in PP-based polymer/inorganic filler nanocomposites and metal/resin bonding materials. We found that the amount of water accumulated at the PP/Si interface decreased with increasing immersion time of the Si substrate in a solution of HMDS in hexane prior to PP film deposition. During the immersion of the Si substrate, the HMDS molecules were deposited on the Si substrate as a monolayer without aggregation. Furthermore, the coverage of the HMDS monolayer on the Si substrate increased with increasing immersion time. At 60 ° C and 85% RH, only a slight amount of interfacial water was detected after HMDS treatment for 1200 min. As a result, the maximum concentration of interfacial water was reduced to 0.1 from 0.3, where the latter corresponds to the PP film deposited on the untreated substrate.