Purpose: Through-time spiral GRAPPA is a real-time imaging technique that enables ungated, free-breathing evaluation of the left ventricle. However, it requires a separate fully-sampled calibration scan to calculate GRAPPA weights. A self-calibrated through-time spiral GRAPPA method is proposed that uses a specially designed spiral trajectory with interleaved arm ordering such that consecutive undersampled frames can be merged to form calibration data, eliminating the separate fully-sampled acquisition.
Theory and methods: The proposed method considers the time needed to acquire data at all points in a GRAPPA calibration kernel when using interleaved arm ordering. Using this metric, simulations were performed to design a spiral trajectory for self-calibrated GRAPPA. Data were acquired in healthy volunteers using the proposed method and a comparison electrocardiogram-gated and breath-held cine scan. Left ventricular functional values and image quality are compared.
Results: A 12-arm spiral trajectory was designed with a temporal resolution of 32.72 ms/cardiac phase with an acceleration factor of 3. Functional values calculated using the proposed method and the gold-standard method were not statistically significantly different (paired t-test, p < 0.05). Image quality ratings were lower for the proposed method, with statistically significantly different ratings (Wilcoxon signed rank test, p < 0.05) for two of five image quality aspects rated (level of artifact, blood-myocardium contrast).
Conclusions: A self-calibrated through-time spiral GRAPPA reconstruction can enable ungated, free-breathing evaluation of the left ventricle in 71 s. Functional values are equivalent to a gold-standard cine technique, although some aspects of image quality may be inferior due to the real-time nature of the data collection.
Keywords: GRAPPA; cardiovascular magnetic resonance; non-Cartesian; parallel imaging; real-time; spiral.
© 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.