Degrees of algorithmic equivalence between the brain and its DNN models

Trends Cogn Sci. 2022 Dec;26(12):1090-1102. doi: 10.1016/j.tics.2022.09.003. Epub 2022 Oct 7.

Abstract

Deep neural networks (DNNs) have become powerful and increasingly ubiquitous tools to model human cognition, and often produce similar behaviors. For example, with their hierarchical, brain-inspired organization of computations, DNNs apparently categorize real-world images in the same way as humans do. Does this imply that their categorization algorithms are also similar? We have framed the question with three embedded degrees that progressively constrain algorithmic similarity evaluations: equivalence of (i) behavioral/brain responses, which is current practice, (ii) the stimulus features that are processed to produce these outcomes, which is more constraining, and (iii) the algorithms that process these shared features, the ultimate goal. To improve DNNs as models of cognition, we develop for each degree an increasingly constrained benchmark that specifies the epistemological conditions for the considered equivalence.

Keywords: algorithmic equivalence; categorization; computation; deep neural networks; neuroimaging.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Brain* / physiology
  • Cognition
  • Humans
  • Neural Networks, Computer*