Refractive index (RI) sensing plays an important role in analytical chemistry, medical diagnosis, and environmental monitoring. The optofluidic technique is considered to be an ideal tool for RI sensor configuration for its high integration, high sensitivity, and low cost. However, it remains challenging to achieve RI measurement in real time with high sensitivity and low detection limit (DL) simultaneously. In this work, we design and fabricate a RI sensor with an arched optofluidic waveguide by monitoring the power loss of the light passing through the waveguide, which is sandwiched by the air-cladding and the liquid-cladding under test, we achieve RI detection of the sample in real time and with high sensitivity. Furthermore, both numerical simulation and experimental investigation show that our RI sensor can be designed with different geometric parameters to cover multiple RI ranges with high sensitivities for different applications. Experimental results illustrate that our sensor is capable to achieve a superior sensitivity better than -19.2 mW/RIU and a detection limit of 5.21×10-8 RIU in a wide linear dynamic range from 1.333 to 1.392, providing a promising solution for real-time and high-sensitivity RI sensing.