Three-dimensional assessment of vascular cooling effects on hepatic microwave ablation in a standardized ex vivo model

Sci Rep. 2022 Oct 12;12(1):17061. doi: 10.1038/s41598-022-21437-4.

Abstract

The aim of this study was a three-dimensional analysis of vascular cooling effects on microwave ablation (MWA) in an ex vivo porcine model. A glass tube, placed in parallel to the microwave antenna at distances of 2.5, 5.0 and 10.0 mm (A-V distance), simulated a natural liver vessel. Seven flow rates (0, 1, 2, 5, 10, 100, 500 ml/min) were evaluated. Ablations were segmented into 2 mm slices for a 3D-reconstruction. A qualitative and quantitative analysis was performed. 126 experiments were carried out. Cooling effects occurred in all test series with flow rates ≥ 2 ml/min in the ablation periphery. These cooling effects had no impact on the total ablation volume (p > 0.05) but led to changes in ablation shape at A-V distances of 5.0 mm and 10.0 mm. Contrary, at a A-V distance of 2.5 mm only flow rates of ≥ 10 ml/min led to relevant cooling effects in the ablation centre. These cooling effects influenced the ablation shape, whereas the total ablation volume was reduced only at a maximal flow rate of 500 ml/min (p = 0.002). Relevant cooling effects exist in MWA. They mainly depend on the distance of the vessel to the ablation centre.

MeSH terms

  • Ablation Techniques* / methods
  • Animals
  • Catheter Ablation* / methods
  • Liver / blood supply
  • Liver / surgery
  • Microwaves / therapeutic use
  • Radiofrequency Ablation*
  • Swine