Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein receptor with intracellular tyrosine kinase activity. Mutations in the EGFR gene, including deletions in exon 19 and the mutation L858R, induce responsiveness of non-small cell lung cancer (NSCLC) to a group of drugs known as tyrosine kinase inhibitors. Here, we report the development of the CRISPR-based fluorescent reporter (CBFR) assay including a two-step strategy combining PCR amplification and Cas12a-driven cleavage to detect the delE746_A750 subtype of EGFR exon 19 deletions. Sensitivity and specificity of the CBFR assay were analyzed with different concentrations of fluorescence reporter and different amounts of PCR product. The results demonstrated that increasing the fluorescent reporter to 4 μM and the PCR product to 5 μl enhanced sensitivity. The CBFR assay could detect EGFR exon 19 deletion even with a frequency of 1% in samples. In clinical NSCLC samples, optimized CBFR assay enabled visual detection of the delE746_A750 subtype in less than 1 h. The CBFR assay provides a sensitive, specific, and simple strategy designed based on a straightforward and inexpensive process. We suggest that the CBFR assay could serve as a diagnostic approach to detect mutations, deletions, and pathogens in underequipped laboratories and promote personalized therapeutic approaches.
Keywords: CRISPR-Cas12; Epidermal growth factor receptor; Fluorescent visual detection; Mutation detection; Non-small cell lung cancer; Personalized medicine.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.