We demonstrate experimentally a flexible crystalline silicon (c-Si) solar cell (SC) based on dopant-free interdigitated back contacts (IBCs) with thickness of merely 50 µm for, to the best of our knowledge, the first time. A MoOx thin film is proposed to cover the front surface and the power conversion efficiency (PCE) is boosted to over triple that of the uncoated SC. Compared with the four-time thicker SC, our thin SC is still over 77% efficient. Systematic studies show the front MoOx film functions for both antireflection and passivation, contributing to the excellent performance. A double-interlayer (instead of a previously-reported single interlayer) is identified at the MoOx/c-Si interface, leading to efficient chemical passivation. Meanwhile, due to the large workfunction difference, underneath the interface a strong built-in electric field is generated, which intensifies the electric field over the entire c-Si active layer, especially in the 50-µm thick layer. Photocarriers are expelled quickly to the back contacts with less recombined and more extracted. Besides, our thin IBC SC is highly flexible. When bent to a radius of 6 mm, its PCE is still 76.6% of that of the unbent cell. Fabricated with low-temperature and doping-free processes, our thin SCs are promising as cost-effective, light-weight and flexible power sources.