Bioinformatics and Experimental Analyses Reveal Immune-Related LncRNA-mRNA Pair AC011483.1- CCR7 as a Biomarker and Therapeutic Target for Ischemic Cardiomyopathy

Int J Mol Sci. 2022 Oct 9;23(19):11994. doi: 10.3390/ijms231911994.

Abstract

Ischemic cardiomyopathy (ICM), which increases along with aging, is the leading cause of heart failure. Currently, immune response is believed to be critical in ICM whereas the roles of immune-related lncRNAs remain vague. In this study, we aimed to systematically analyze immune-related lncRNAs in the aging-related disease ICM. Here, we downloaded publicly available RNA-seq data from ischemic cardiomyopathy patients and non-failing controls (GSE116250). Weighted gene co-expression network analysis (WGCNA) was performed to identify key ICM-related modules. The immune-related lncRNAs of key modules were screened by co-expression analysis of immune-related mRNAs. Then, a competing endogenous RNA (ceRNA) network, including 5 lncRNAs and 13 mRNAs, was constructed using lncRNA-mRNA pairs which share regulatory miRNAs and have significant correlation. Among the lncRNA-mRNA pairs, one pair (AC011483.1-CCR7) was verified in another publicly available ICM dataset (GSE46224) and ischemic cell model. Further, the immune cell infiltration analysis of the GSE116250 dataset revealed that the proportions of monocytes and CD8+ T cells were negatively correlated with the expression of AC011483.1-CCR7, while plasma cells were positively correlated, indicating that AC011483.1-CCR7 may participate in the occurrence and development of ICM through immune cell infiltration. Together, our findings revealed that lncRNA-mRNA pair AC011483.1-CCR7 may be a novel biomarker and therapeutic target for ICM.

Keywords: bioinformatics analysis; immune cell infiltration; ischemic cardiomyopathy; long non-coding RNAs.

MeSH terms

  • Biomarkers / metabolism
  • CD8-Positive T-Lymphocytes / metabolism
  • Cardiomyopathies* / genetics
  • Computational Biology
  • Gene Regulatory Networks
  • Humans
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • RNA, Long Noncoding* / genetics
  • RNA, Long Noncoding* / metabolism
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Receptors, CCR7 / genetics

Substances

  • Biomarkers
  • CCR7 protein, human
  • MicroRNAs
  • RNA, Long Noncoding
  • RNA, Messenger
  • Receptors, CCR7