The structure of the O-antigen from the international reference strain Escherichia coli O93:-:H16 has been determined. A nonrandom modal chain-length distribution was observed for the lipopolysaccharide, a pattern which is typical when long O-specific polysaccharides are expressed. By a combination of (i) bioinformatics information on the gene cluster related to O-antigen synthesis including putative function on glycosyl transferases, (ii) the magnitude of NMR coupling constants of anomeric protons, and (iii) unassigned 2D 1H, 13C-HSQC, and 1H,1H-TOCSY NMR spectra it was possible to efficiently elucidate the structure of the carbohydrate polymer in an automated fashion using the computer program CASPER. The polysaccharide also carries O-acetyl groups and their locations were determined by 2D NMR experiments showing that ~½ of the population was 2,6-di-O-acetylated, ~¼ was 2-O-acetylated, whereas ~¼ did not carry O-acetyl group(s) in the 3-O-substituted mannosyl residue of the repeating unit. The structure of the tetrasaccharide repeating unit of the O-antigen is given by: →2)-β-d-Manp-(1→3)-β-d-Manp2Ac6Ac-(1→4)-β-d-GlcpA-(1→3)-α-d-GlcpNAc-(1→, which should also be the biological repeating unit and it shares structural elements with capsular polysaccharides from E. coli K84 and K50. The structure of the acidic O-specific polysaccharide from Cellulophaga baltica strain NN015840T differs to that of the O-antigen from E. coli O93 by lacking the O-acetyl group at O6 of the O-acetylated mannosyl residue.
Keywords: CASPER; CarbBuilder; NMR spectroscopy; bioinformatics; lipopolysaccharide.
© The Author(s) 2022. Published by Oxford University Press.