Predicting Adolescent Intervention Non-responsiveness for Precision HIV Prevention Using Machine Learning

AIDS Behav. 2023 May;27(5):1392-1402. doi: 10.1007/s10461-022-03874-4. Epub 2022 Oct 18.

Abstract

Interventions to teach protective behaviors may be differentially effective within an adolescent population. Identifying the characteristics of youth who are less likely to respond to an intervention can guide program modifications to improve its effectiveness. Using comprehensive longitudinal data on adolescent risk behaviors, perceptions, sensation-seeking, peer and family influence, and neighborhood risk factors from 2564 grade 10-12 students in The Bahamas, this study employs machine learning approaches (support vector machines, logistic regression, decision tree, and random forest) to identify important predictors of non-responsiveness for precision prevention. We used 80% of the data to train the models and the rest for model testing. Among different machine learning algorithms, the random forest model using longitudinal data and the Boruta feature selection approach predicted intervention non-responsiveness best, achieving sensitivity of 85.4%, specificity of 78.4% and AUROC of 0.93 on the training data, and sensitivity of 84.3%, specificity of 67.1%, and AUROC of 0.85 on the test data. Key predictors include self-efficacy, perceived response cost, parent monitoring, vulnerability, response efficacy, HIV/AIDS knowledge, communication about condom use, and severity of HIV/STI. Machine learning can yield powerful predictive models to identify adolescents who are unlikely to respond to an intervention. Such models can guide the development of alternative strategies that may be more effective with intervention non-responders.

Keywords: Condom use skills; HIV prevention; Intervention non-responsiveness; Machine learning; Precision prevention; Prediction; Self-efficacy.

MeSH terms

  • Acquired Immunodeficiency Syndrome* / prevention & control
  • Adolescent
  • HIV Infections* / diagnosis
  • HIV Infections* / epidemiology
  • HIV Infections* / prevention & control
  • Humans
  • Machine Learning
  • Safe Sex
  • Sexually Transmitted Diseases* / diagnosis
  • Sexually Transmitted Diseases* / prevention & control