Quenching of Single-Particle Strength in A=15 Nuclei

Phys Rev Lett. 2022 Oct 7;129(15):152501. doi: 10.1103/PhysRevLett.129.152501.

Abstract

Absolute cross sections for the addition of s- and d-wave neutrons to ^{14}C and ^{14}N have been determined simultaneously via the (d,p) reaction at 10 MeV/u. The difference between the neutron and proton separation energies, ΔS, is around -20 MeV for the ^{14}C+n system and +8 MeV for ^{14}N+n. The population of the 1s_{1/2} and 0d_{5/2} orbitals for both systems is reduced by a factor of approximately 0.5 compared with the independent single-particle model, or about 0.6 when compared with the shell model. This finding strongly contrasts with results deduced from intermediate-energy knockout reactions between similar nuclei on targets of ^{9}Be and ^{12}C. The simultaneous technique used removes many systematic uncertainties.