FOXO3a-dependent up-regulation of HSP90 alleviates cisplatin-induced apoptosis by activating FUNDC1-mediated mitophagy in hypoxic osteosarcoma cells

Cell Signal. 2023 Jan:101:110500. doi: 10.1016/j.cellsig.2022.110500. Epub 2022 Oct 19.

Abstract

Hypoxia-induced decrease in cisplatin (CDDP) sensitivity in human osteosarcoma (OS) is a significant obstacle to effective chemotherapy. Recently, mitophagy has been shown to be associated with CDDP sensitivity. However, whether it regulates hypoxia-induced decreases in CDDP sensitivity in OS and the underlying mechanisms remain unknown. In this study, we found that hypoxia activated mitophagy and suppressed mitophagy with specific inhibitors, mitochondrial division inhibitor-1 (Mdivi-1) or lysosome inhibitor chloroquine (CQ), which inhibited CDDP-induced apoptosis in hypoxic U-2OS and MG-63 cells. In addition, hypoxia upregulated the phosphorylation level of FUN14 domain-containing protein 1 (FUNDC1), whereas the activation of mitophagy and decreased CDDP sensitivity were inhibited by transfection with FUNDC1 small interfering RNA (siRNA). Hypoxia treatment also led to the up-regulation of heat shock protein 90 (HSP90), whereas HSP90 siRNA inhibited FUNDC1-mediated activation of mitophagy and decreased CDDP sensitivity. Furthermore, activation of Unc-51 like autophagy activating kinase 1 (Ulk1) was found in U-2OS and MG-63 cells after induction of hypoxia. Overexpression of Ulk1 prevented the inhibitory effect of HSP90 siRNA on the activation of FUNDC1 and mitophagy and decreased CDDP sensitivity in hypoxic U-2OS and MG-63 cells. Finally, hypoxia induced the activation of forkhead box transcription factor 3a (FOXO3a), whereas FOXO3a siRNA inhibited hypoxia-induced HSP90 up-regulation, Ulk1 activation, and FUNDC1-mediated activation of mitophagy, and decreased CDDP sensitivity in U-2OS and MG-63 cells. Using a chromatin immunoprecipitation (ChIP) assay, we confirmed that FOXO3a binds to the HSP90 promoter region. In conclusion, our findings suggest that hypoxia alleviates CDDP-induced apoptosis by activating mitophagy through the FOXO3a/HSP90/Ulk1/FUNDC1 signaling pathway in OS cells.

Keywords: FOXO3a; FUNDC1; HSP90; Hypoxia; Mitophagy; Osteosarcoma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis
  • Bone Neoplasms*
  • Cell Hypoxia
  • Cisplatin / pharmacology
  • Humans
  • Hypoxia
  • Membrane Proteins / metabolism
  • Mitochondrial Proteins / metabolism
  • Mitophagy / physiology
  • Osteosarcoma* / drug therapy
  • RNA, Small Interfering / metabolism
  • Up-Regulation

Substances

  • Cisplatin
  • Mitochondrial Proteins
  • RNA, Small Interfering
  • Membrane Proteins
  • FUNDC1 protein, human