Osteoarthritis (OA), a chronic degenerative disease, is a major cause of pain, disability, and reduced quality of life among the elderly worldwide. The key to treating it is early prevention and effective intervention. The anti-inflammatory effects of scutellarin (SCU), a flavonoid derived from Erigeron breviscapus, have been increasingly reported. However, the mechanism by which SCU affects OA remains unclear. This study aimed to investigate the therapeutic effects and potential molecular mechanisms of SCU in the development of OA. Here, we found that SCU inhibited interleukin (IL)- 1β-induced degradation of the extracellular matrix (ECM) of cartilage through the NF-kappaB/mitogen-activated protein kinases (NF-κB/MAPK) signaling pathway. In addition, in vivo data showed that SCU significantly reduced cartilage damage in the destabilization of the medial meniscus (DMM) mouse model and ovariectomy (OVX)-induced subchondral bone loss and cartilage degeneration in mice. In summary, our data showed that SCU is expected to become a potentially effective candidate treatment strategy for OA.
Keywords: Chondrocytes; MAPK; NF-κB; Osteoarthritis; Scutellarin; Subchondral bone.
Copyright © 2022 The Authors. Published by Elsevier Masson SAS.. All rights reserved.