The fabrication of electrochemical sensing platforms for cancer monitoring by quantifying circulating tumor cells (CTCs) in blood holds promise for providing a low-cost, rapid, feasible, and safe approach for cancer diagnosis. Here, we isolate cancer cells using CoFe2O4 nanoparticles functionalized with folic acid and chitosan as an inexpensive magnetic nanoprobe. This electrochemical cytosensing platform was realized using polyaniline-folic acid nanohybrids with a three-dimensional hierarchical structure that presents abundant affinity sites toward overexpressed folate bioreceptors on cancer cells, in addition to retaining satisfied conductivity. Furthermore, 3D modeling and simulation of the polyaniline-folic acid structures were conducted to investigate the stable complex between aniline and folate, and the interaction between the polyaniline-folate complex and folate receptor alpha1, a bioreceptor on MCF-7 was revealed for the first time. The limit of detection was calculated to be 4 cells mL-1 with a linear range from 50 to 106 cells mL-1.
Keywords: Circulating tumor cells (CTCs); CoFe(2)O(4); Magnetic cell separation; Molecular dynamic simulations; Polyaniline-folic acid; cytosensor.
Copyright © 2022 Elsevier Inc. All rights reserved.