Metabolic rewiring is a hallmark feature prevalent in cancer cells as well as insulin resistance (IR) associated with diet-induced obesity (DIO). For instance, tumor metabolism shifts towards an enhanced glycolytic state even under aerobic conditions. In contrast, DIO triggers lipid-induced IR by impairing insulin signaling and reducing insulin-stimulated glucose uptake. Based on physiological differences in systemic metabolism, we used a breath analysis approach to discriminate between different pathological states using glucose oxidation as a readout. We assessed glucose utilization in lung cancer-induced cachexia and DIO mouse models using a U-13C glucose tracer and stable isotope sensors integrated into an indirect calorimetry system. Our data showed increased 13CO2 expired by tumor-bearing (TB) mice and a reduction in exhaled 13CO2 in the DIO model. Taken together, our findings illustrate high glucose uptake and consumption in TB animals and decreased glucose uptake and oxidation in obese mice with an IR phenotype. Our work has important translational implications for the utility of stable isotopes in breath-based detection of glucose homeostasis in models of lung cancer progression and DIO.
Keywords: circadian clock; diet-induced obesity (DIO); glucose oxidation and detection; insulin resistance; tumor metabolism.
Copyright © 2022 Verlande, Chun, Song, Oettler, Knot and Masri.