The Onchocercidae family is composed of more than 30 valid nematode species with notable zoonotic potential. Current limitations in molecular characterization methods and species identification are the main obstacles to a better understanding of the biology of Onchocercidae species, particularly in wildlife. This study describes for the first time the complete mitochondrial (mt) genome sequence of Neofoleyellides sp. isolated from a wild bird (Pyrrhocorax pyrrhocorax) and belonging to the Neofoleyellides genus (Nematoda: Onchocercidae). The mt genome of Neofoleyellides sp. (GenBank accession number: ON641583) was a typical circular DNA molecule of 13,628 bp in size with an AT content of 76.69%. The complete mt genome comprised 36 functional subunits, including 12 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22 transfer RNA genes. The most common start codon was ATT/ATG except for nad2 with TTG, and TAA was the termination codon for all protein-coding genes (PCGs). Phylogenetic analysis of the concatenated and aligned amino acid sequences of the 12 PCGs showed that the trees generated using different methods (Bayesian inference and maximum likelihood) with different partition schemes shared similar topologies. The isolated Neofoleyellides sp. was placed in the Onchocercidae family and formed a sister branch with the genera Onchocerca and Dirofilaria. The entire mt genome of Neofoleyellides sp. presented in this study could provide useful data for studying the population genetics and phylogenetic relationships of Onchocercidae species.
Keywords: Neofoleyellides sp.; Onchocercidae nematodes; corvid; mt genome; phylogenetic analyses.