A Review of Radiomics in Predicting Therapeutic Response in Colorectal Liver Metastases: From Traditional to Artificial Intelligence Techniques

Healthcare (Basel). 2022 Oct 19;10(10):2075. doi: 10.3390/healthcare10102075.

Abstract

An early evaluation of colorectal cancer liver metastasis (CRCLM) is crucial in determining treatment options that ultimately affect patient survival rates and outcomes. Radiomics (quantitative imaging features) have recently gained popularity in diagnostic and therapeutic strategies. Despite this, radiomics faces many challenges and limitations. This study sheds light on these limitations by reviewing the studies that used radiomics to predict therapeutic response in CRCLM. Despite radiomics' potential to enhance clinical decision-making, it lacks standardization. According to the results of this study, the instability of radiomics quantification is caused by changes in CT scan parameters used to obtain CT scans, lesion segmentation methods used for contouring liver metastases, feature extraction methods, and dataset size used for experimentation and validation. Accordingly, the study recommends combining radiomics with deep learning to improve prediction accuracy.

Keywords: CT; colorectal cancer; liver metastases; radiomics; texture features.

Publication types

  • Review