Neonatal coarctation of the aorta (CoA) is a common congenital heart defect. Its antenatal diagnosis remains challenging, and its pathophysiology is poorly understood. We present a novel statistical shape modeling (SSM) pipeline to study the role and predictive value of arch shape in CoA in utero. Cardiac magnetic resonance imaging (CMR) data of 112 fetuses with suspected CoA was acquired and motion-corrected to three-dimensional volumes. Centerlines from fetal arches were extracted and used to build a statistical shape model capturing relevant anatomical variations. A linear discriminant analysis was used to find the optimal axis between CoA and false positive cases. The CoA shape risk score classified cases with an area under the curve of 0.907. We demonstrate the feasibility of applying a SSM pipeline to three-dimensional fetal CMR data while providing novel insights into the anatomical determinants of CoA and the relevance of in utero arch anatomy for antenatal diagnosis of CoA.
Keywords: Clinical Biomarker; Computational Anatomy; Congenital Heart Disease; Machine Learning; Magnetic Resonance Imaging; Statistical Shape Modeling.
© 2022. The Author(s).