Gross tumour volume radiomics for prognostication of recurrence & death following radical radiotherapy for NSCLC

NPJ Precis Oncol. 2022 Oct 27;6(1):77. doi: 10.1038/s41698-022-00322-3.

Abstract

Recurrence occurs in up to 36% of patients treated with curative-intent radiotherapy for NSCLC. Identifying patients at higher risk of recurrence for more intensive surveillance may facilitate the earlier introduction of the next line of treatment. We aimed to use radiotherapy planning CT scans to develop radiomic classification models that predict overall survival (OS), recurrence-free survival (RFS) and recurrence two years post-treatment for risk-stratification. A retrospective multi-centre study of >900 patients receiving curative-intent radiotherapy for stage I-III NSCLC was undertaken. Models using radiomic and/or clinical features were developed, compared with 10-fold cross-validation and an external test set, and benchmarked against TNM-stage. Respective validation and test set AUCs (with 95% confidence intervals) for the radiomic-only models were: (1) OS: 0.712 (0.592-0.832) and 0.685 (0.585-0.784), (2) RFS: 0.825 (0.733-0.916) and 0.750 (0.665-0.835), (3) Recurrence: 0.678 (0.554-0.801) and 0.673 (0.577-0.77). For the combined models: (1) OS: 0.702 (0.583-0.822) and 0.683 (0.586-0.78), (2) RFS: 0.805 (0.707-0.903) and 0·755 (0.672-0.838), (3) Recurrence: 0·637 (0.51-0.·765) and 0·738 (0.649-0.826). Kaplan-Meier analyses demonstrate OS and RFS difference of >300 and >400 days respectively between low and high-risk groups. We have developed validated and externally tested radiomic-based prediction models. Such models could be integrated into the routine radiotherapy workflow, thus informing a personalised surveillance strategy at the point of treatment. Our work lays the foundations for future prospective clinical trials for quantitative personalised risk-stratification for surveillance following curative-intent radiotherapy for NSCLC.