The quasicollinear geometry of acousto-optic (AO) diffraction is notable as makes it possible to achieve an extremely high AO interaction length and, consequently, an anomalously high spectral resolution for AO devices. This geometry is especially convenient for the implementation of multifrequency AO diffraction, which has found wide application for solving the problems related to the laser pulse shaping. Since acoustic beams propagate over long distances in quasicollinear AO devices, and optical radiation spectral components diffract in the acoustic field in different parts of the AO crystal, accurate calculation of the characteristics of such devices requires knowing the distribution of the acoustic field amplitude inside the AO cell. The acoustic beam structure is affected by several factors in quasicollinear AO cells: the dimensions of the piezoelectric transducer, the geometry of acoustic wave propagation in the AO cell, acoustic anisotropy and the acoustic energy absorption along the chosen direction in the crystalline material used. In this paper, we propose a generic method to measure the acoustic beam power distribution along the direction of its propagation in the quasicollinear AO cell in the presence of ultrasound power absorption and media acoustic absorption. The measurements were carried out for the ultrasound frequency range from 72 to 176 MHz, for the case when the wave vector of the acoustic beam is directed at an angle of 1.58∘ to the [110] axis in the (11¯0) plane of the paratellurite crystal. The ultrasound attenuation coefficients were obtained for frequency interval between 87 and 176 MHz and their linear dependence on ultrasound frequency was confirmed.
Keywords: Acoustic field; Acousto-optic interaction; Attenuation; Paratellurite; Quasicollinear diffraction.
Copyright © 2022 Elsevier B.V. All rights reserved.