Doxorubicin (DOX) is a most common anthracycline chemotherapeutic agent; however, its clinical efficacy is limited due to its severe and irreversible cardiotoxicity. Ferroptosis, characterized by iron overload and lipid peroxidation, plays a pivotal role in DOX-induced cardiotoxicity. Resveratrol (RSV) displays cardioprotective and anticancer effects, owing to its antioxidative and anti-inflammatory properties. However, the role and mechanism of RSV in DOX-mediated ferroptosis in cardiomyocytes is unclear. This study showed that DOX decreased cell viability, increased iron accumulation and lipid peroxidation in H9c2 cells; however, these effects were reversed by RSV and ferroptosis inhibitor ferrostatin-1 (Fer-1) pre-treatment. Additionally, RSV significantly increased the cell viability of H9c2 cells treated with ferroptosis inducers Erastin (Era) and RSL3. Mechanistically, RSV inhibited mitochondrial reactive oxygen species (mtROS) overproduction and upregulated the p62-NRF2/HO-1 pathway. RSV-induced NRF2 activation was partially dependent on p62, and the selective inhibition of p62 (using p62-siRNA interference) or NRF2 (using NRF2 specific inhibitor, ML385) significantly abolished the anti-ferroptosis function of RSV. Furthermore, RSV treatment protected mice against DOX-induced cardiotoxicity, including significantly improving left ventricular function, ameliorating myocardial fibrosis and suppressing ferroptosis. Consistent with in vitro results, RSV also upregulated the p62-NRF2/HO-1 expression, which was inhibited by DOX, in the myocardium. Notably, the protective effect of RSV in DOX-mediated ferroptosis was similar to that of Fer-1 in vitro and in vivo. Thus, the p62-NRF2 axis plays a critical role in regulating DOX-induced ferroptosis in cardiomyocytes. RSV as a potent p62 activator has potential as a therapeutic target in preventing DOX-induced cardiotoxicity via ferroptosis modulation.
Keywords: Cardiotoxicity; Doxorubicin; Ferroptosis; Polyphenolic Compound; Resveratrol; p62-NRF2 Axis.