Alternaria leaf blight and head rot is an important disease of broccoli and other cole crops. With no resistant host varieties, fungicides are utilized to manage this disease. However, anecdotal evidence suggests that, in southeastern U.S. broccoli-producing states, there is a loss of disease control through the use of quinone outside inhibitor (QoI) fungicides. To understand why there is a reduced sensitivity to QoI fungicides in these states, we isolated Alternaria spp. from symptomatic lesions on cole crops from Georgia and Virginia (two states with observations of loss of fungicide sensitivity) as well as New York (a state with no observations of loss of fungicide sensitivity). Using multilocus sequencing and phylogenetic analysis, we identified two species, Alternaria brassicicola and A. japonica. Whereas A. brassicicola was isolated in all states, A. japonica was only isolated in Georgia. Next, we wanted to determine the sensitivity of these isolates to azoxystrobin-an active ingredient in some QoI fungicides-by estimating the effective concentration at which only 50% of spores germinate (EC50). The EC50 of A. brassicicola ranged from 0.01 to 0.17 ppm, whereas that of A. japonica was 8.1 to 28.1 ppm. None of the known target-site mutations that confer resistance to QoI fungicides were identified during screening of either species. A. japonica was first reported on the east coast of the United States in 2020 in South Carolina. The substantially higher EC50 value suggests that its emergence in the southeastern United States may play at least a part in the observed loss of disease control. However, further in planta and field studies are needed to thoroughly test this hypothesis.
Keywords: A. brassicicola; A. japonica; Alternaria; Brassicas; broccoli; conidia germination; crucifers; cytb; phylogenetic analysis; strobilurin.