Differential item functioning (DIF) is often used to examine validity evidence of alternate form test accommodations. Unfortunately, traditional approaches for evaluating DIF are prone to selection bias. This article proposes a novel DIF framework that capitalizes on regression discontinuity design analysis to control for selection bias. A simulation study was performed to compare the new framework with traditional logistic regression, with respect to Type I error and power rates of the uniform DIF test statistics and bias and root mean square error of the corresponding effect size estimators. The new framework better controlled the Type I error rate and demonstrated minimal bias but suffered from low power and lack of precision. Implications for practice are discussed.
Keywords: differential item functioning (DIF); logistic regression; regression discontinuity design; selection bias.
© The Author(s) 2022.