Cystathionine γ lyase S-sulfhydrates Drp1 to ameliorate heart dysfunction

Redox Biol. 2022 Dec:58:102519. doi: 10.1016/j.redox.2022.102519. Epub 2022 Oct 28.

Abstract

Hydrogen sulfide (H2S), produced by cystathionine γ lyase (CSE), is an important endogenous gasotransmitter to maintain heart function. However, the molecular mechanism for how H2S influences the mitochondrial morphology during heart failure remains poorly understood. Here, we found that CSE/H2S pathway mediated cardiac function and mitochondrial morphology through regulating dynamin related protein 1 (Drp1) activity and translocation. Mechanistically, elevation of H2S levels by CSE overexpression declined protein level, phosphorylation (Ser 616), oligomerization and GTPase activity of Drp1 by S-sulfhydration in mouse hearts. Interestingly, Drp1 S-sulfhydration directly competed with S-nitrosylation by nitric oxide at the specific cysteine 607. The non-S-sulfhydration of Drp1 mutation (C607A) attenuated the regulatory effect of H2S on Drp1 activation, mitochondrial fission and heart function. Moreover, the non-canonical role of Drp1 mediated isoprenaline-induced mitochondrial dysfunction and cardiomyocyte death through interaction with voltage-dependent anion channel 1. These results uncover that a novel mechanism that H2S S-sulfhydrated Drp1 at cysteine 607 to prevent heart failure through modulating its activity and mitochondrial translocation. Our findings also provide initial evidence demonstrating that Drp1 may be a critical regulator as well as an effective strategy for heart dysfunction.

Keywords: Dynamin related protein 1; Heart failure; Hydrogen sulfide; Mitochondrial fission; S-Sulfhydration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cystathionine gamma-Lyase / genetics
  • Cystathionine gamma-Lyase / metabolism
  • Cysteine / metabolism
  • Dynamins / genetics
  • Heart Failure* / genetics
  • Hydrogen Sulfide* / metabolism
  • Hydrogen Sulfide* / pharmacology
  • Mice

Substances

  • Cystathionine gamma-Lyase
  • Cysteine
  • Hydrogen Sulfide
  • Dynamins