Exercise capacity in a cohort of children with congenital heart disease

Eur J Pediatr. 2023 Jan;182(1):295-306. doi: 10.1007/s00431-022-04648-9. Epub 2022 Nov 5.

Abstract

In patients with congenital heart disease (CHD), reduced exercise capacity can be a predictor for late complications and may be used to guide interventions. Yet, the interpretation of exercise capacity is challenged by changes in body composition during growth. Our aim was to create an overview of disease-specific exercise capacity in children with CHD. We performed a multicentre retrospective study of exercise capacity of CHD patients, aged 6-18 years, tested between January 2001 and October 2018. Sex-specific distribution graphs were made using the LMS method and height to relate to body size. We included all CHD with N > 50, including severe defects (e.g., univentricular heart, tetralogy of Fallot) and "simple" lesions as ventricular septum defect and atrial septum defect. We included 1383 tests of 1208 individual patients for analysis. The peak oxygen uptake (VO2peak, 37.3 ml/min/kg (25th-75th percentile 31.3-43.8)) varied between specific defects; patients with univentricular hearts had lower VO2peak compared with other CHD. All groups had lower VO2peak compared to healthy Dutch children. Males had higher VO2peak, Wpeak and O2pulsepeak than females. Sex- and disease-specific distribution graphs for VO2peak, Wpeak and O2pulsepeak showed increase in variation with increase in height. Conclusion: Disease-specific distribution graphs for exercise capacity in children with CHD from a large multicentre cohort demonstrated varying degrees of reduced VO2peak and Wpeak. The distribution graphs can be used in the structured follow-up of patients with CHD to predict outcome and identify patients at risk. What is Known: • Children with congenital heart disease (COnHD) are at risk to develop heart failure, arrhytmia's and other complications. Exercise capacity may be an important predictor for outcome in children with ConHD. In children, the interpretation of exercise capacity poses an additional challenge related to physical changes during growth. What is New: • In this report of a multi-center cohort >1300 childrewn with ConHD, we related the changes in exercise capacity to length. We demonstrated that exercise capacity was reduced as compared with healthy children and we observed variation between disease groups. Patients with a univentricular circulation (Fontan) had worse exercise capacity. We constructed disease specific charts of development of exercise capacity throughout childhood, accessible via a web-site. These graphs may help practitioner to guide children with ConHD.

Keywords: Cardiopulmonary exercise testing; Congenital heart disease; Exercise tolerance; Peak oxygen uptake; Pediatric cardiology.

Publication types

  • Multicenter Study

MeSH terms

  • Child
  • Exercise Test / methods
  • Exercise Tolerance
  • Female
  • Heart Defects, Congenital*
  • Heart Septal Defects, Ventricular*
  • Humans
  • Male
  • Oxygen Consumption
  • Retrospective Studies